def safe_loss(logits):
# same as log(1 + exp(-pairwise_logits)).
return tf.nn.relu(-logits) + tf.math.log1p(
tf.exp(-tf.abs(logits)))
def new_pw_loss(qs_logits, qs_label):
logits_diff = tf.expand_dims(qs_logits, 2) - tf.expand_dims(qs_logits, 1)
label_diff = tf.expand_dims(qs_label, 2) - tf.expand_dims(qs_label, 1)
label_mask = tf.cast(tf.greater(label_diff, 0.), logits_diff.dtype)
valid_label = tf.greater_equal(qs_label, 0.)
label_diff_valid = tf.math.logical_and(tf.expand_dims(valid_label, 2), tf.expand_dims(valid_label, 1))
label_mask = label_mask * label_diff_valid
ls_greater_0_num = tf.reduce_sum(tf.cast(tf.greater(label_diff, 0.), logits_diff.dtype))
ls_mean_logits_diff = tf.reduce_sum(logits_diff * label_mask) / ls_greater_0_num
ls_pairwise_loss = tf.reduce_sum(safe_loss(logits_diff) * label_mask) / ls_greater_0_num
return ls_pairwise_loss
pairwise loss
TensorFlow相关文章
最近热门
- 论文《Applying Deep Learning To Airbnb Search》阅读笔记
- SFT(Supervised Fine-Tuning,即有监督微调)
- 论文 | PAL: A Position-bias Aware Learning Framework for CTR Prediction in Live Recommender Systems
- 凸优化中的 Slater 条件
- 因果推断 | uplift | 营销增长 | 增长算法 | 智能营销
- Context Parallel(简称CP)并行化技术
- ITC(Image-Text Contrastive)loss和ITM(Image-Text Matching)loss
- tf.losses.log_loss
- 论文:Dataset Regeneration for Sequential Recommendation
- 论文 | POSO: Personalized Cold Start Modules for Large-scale Recommender Systems
最常浏览
- 016 推荐系统 | 排序学习(LTR - Learning To Rank)
- 偏微分符号
- i.i.d(又称IID)
- 利普希茨连续条件(Lipschitz continuity)
- (error) MOVED 原因和解决方案
- TextCNN详解
- 找不到com.google.protobuf.GeneratedMessageV3的类文件
- Deployment failed: repository element was not specified in the POM inside distributionManagement
- cannot access com.google.protobuf.GeneratedMessageV3 解决方案
- CLUSTERDOWN Hash slot not served 问题原因和解决办法
×