目录
Dense层
Dense就是常用的全连接层,所实现的运算是output = activation(dot(input, kernel)+bias)。其中activation是逐元素计算的激活函数,kernel是本层的权值矩阵,bias为偏置向量,只有当use_bias=True才会添加。
keras.layers.core.Dense(units,
activation=None,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None)
示例
model = Sequential()
model.add(Dense(32, input_shape=(16,)))
# now the model will take as input arrays of shape (*, 16)
# and output arrays of shape (*, 32)
# after the first layer, you don't need to specify
# the size of the input anymore:
model.add(Dense(32))
参数说明
-
units:大于0的整数,代表该层的输出维度。
-
activation:激活函数,为预定义的激活函数名(参考激活函数),或逐元素(element-wise)的Theano函数。如果不指定该参数,将不会使用任何激活函数(即使用线性激活函数:a(x)=x)
-
use_bias: 布尔值,是否使用偏置项
-
kernel_initializer:权值初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。参考initializers
-
bias_initializer:偏置向量初始化方法,为预定义初始化方法名的字符串,或用于初始化偏置向量的初始化器。参考initializers
-
kernel_regularizer:施加在权重上的正则项,为Regularizer对象
-
bias_regularizer:施加在偏置向量上的正则项,为Regularizer对象
-
activity_regularizer:施加在输出上的正则项,为Regularizer对象
-
kernel_constraints:施加在权重上的约束项,为Constraints对象
-
bias_constraints:施加在偏置上的约束项,为Constraints对象
输入
形如(batch_size, ..., input_dim)的nD张量,最常见的情况为(batch_size, input_dim)的2D张量
输出
形如(batch_size, ..., units)的nD张量,最常见的情况为(batch_size, units)的2D张量