目录

Dense层

Dense就是常用的全连接层,所实现的运算是output = activation(dot(input, kernel)+bias)。其中activation是逐元素计算的激活函数,kernel是本层的权值矩阵,bias为偏置向量,只有当use_bias=True才会添加。

keras.layers.core.Dense(units, 
                        activation=None, 
                        use_bias=True, 
                        kernel_initializer='glorot_uniform', 
                        bias_initializer='zeros', 
                        kernel_regularizer=None, 
                        bias_regularizer=None, 
                        activity_regularizer=None, 
                        kernel_constraint=None, 
                        bias_constraint=None)

示例

model = Sequential()
model.add(Dense(32, input_shape=(16,)))
# now the model will take as input arrays of shape (*, 16)
# and output arrays of shape (*, 32)

# after the first layer, you don't need to specify
# the size of the input anymore:
model.add(Dense(32))

参数说明

  • units:大于0的整数,代表该层的输出维度。

  • activation:激活函数,为预定义的激活函数名(参考激活函数),或逐元素(element-wise)的Theano函数。如果不指定该参数,将不会使用任何激活函数(即使用线性激活函数:a(x)=x)

  • use_bias: 布尔值,是否使用偏置项

  • kernel_initializer:权值初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。参考initializers

  • bias_initializer:偏置向量初始化方法,为预定义初始化方法名的字符串,或用于初始化偏置向量的初始化器。参考initializers

  • kernel_regularizer:施加在权重上的正则项,为Regularizer对象

  • bias_regularizer:施加在偏置向量上的正则项,为Regularizer对象

  • activity_regularizer:施加在输出上的正则项,为Regularizer对象

  • kernel_constraints:施加在权重上的约束项,为Constraints对象

  • bias_constraints:施加在偏置上的约束项,为Constraints对象

输入

形如(batch_size, ..., input_dim)的nD张量,最常见的情况为(batch_size, input_dim)的2D张量

输出

形如(batch_size, ..., units)的nD张量,最常见的情况为(batch_size, units)的2D张量