Operation是TensorFlow中的基本概念,中文翻译为操作,又简写为op。
TensorFlow主要的操作组以及对应的操作函数如下:
操作组 | 操作 |
---|---|
Maths | Add, Sub, Mul, Div, Exp, Log, Greater, Less, Equal |
Array | Concat, Slice, Split, Constant, Rank, Shape, Shuffle |
Matrix | MatMul, MatrixInverse, MatrixDeterminant |
Neuronal Network | SoftMax, Sigmoid, ReLU, Convolution2D, MaxPool |
Checkpointing | Save, Restore |
Queues and syncronizations | Enqueue, Dequeue, MutexAcquire, MutexRelease |
Flow control | Merge, Switch, Enter, Leave, NextIteration |
Maths操作组
操作 | 描述 |
---|---|
tf.add(x, y, name=None) | 求和 |
tf.sub(x, y, name=None) | 减法 |
tf.mul(x, y, name=None) | 乘法 |
tf.div(x, y, name=None) | 除法 |
tf.mod(x, y, name=None) | 取模 |
tf.abs(x, name=None) | 求绝对值 |
tf.neg(x, name=None) | 取负 (y = -x). |
tf.sign(x, name=None) | 返回符号 y = sign(x) = -1 if x < 0; 0 if x == 0; 1 if x > 0. |
tf.inv(x, name=None) | 取反 |
tf.square(x, name=None) | 计算平方 (y = x * x = x^2). |
tf.round(x, name=None) | 舍入最接近的整数 # ‘a’ is [0.9, 2.5, 2.3, -4.4] tf.round(a) ==> [ 1.0, 3.0, 2.0, -4.0 ] |
tf.sqrt(x, name=None) | 开根号 (y = \sqrt{x} = x^{1/2}). |
tf.pow(x, y, name=None) | 幂次方 # tensor ‘x’ is [[2, 2], [3, 3]] # tensor ‘y’ is [[8, 16], [2, 3]] tf.pow(x, y) ==> [[256, 65536], [9, 27]] |
tf.exp(x, name=None) | 计算e的次方 |
tf.log(x, name=None) | 计算log,一个输入计算e的ln,两输入以第二输入为底 |
tf.maximum(x, y, name=None) | 返回最大值 (x > y ? x : y) |
tf.minimum(x, y, name=None) | 返回最小值 (x < y ? x : y) |
tf.cos(x, name=None) | 三角函数cosine |
tf.sin(x, name=None) | 三角函数sine |
tf.tan(x, name=None) | 三角函数tan |
tf.atan(x, name=None) | 三角函数ctan |