import tensorflow as tf
import numpy as np
# 使用 NumPy 生成假数据(phony data), 总共 100 个点.
x_data = np.float32(np.random.rand(2, 100)) # 随机输入
y_data = np.dot([0.100, 0.200], x_data) + 0.300
# 构造一个线性模型
b = tf.Variable(tf.zeros([1]))
W = tf.Variable(tf.random_uniform([1, 2], -1.0, 1.0))
y = tf.matmul(W, x_data) + b
# 最小化方差
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
# 初始化变量
init = tf.initialize_all_variables()
# 启动图 (graph)
sess = tf.Session()
sess.run(init)
# 拟合平面
for step in xrange(0, 201):
sess.run(train)
if step % 20 == 0:
print step, sess.run(W), sess.run(b)
# 得到最佳拟合结果 W: [[0.1000.200]], b: [0.300]
tensorflow 示例代码
tensorflow相关文章
最近热门
- AUUC
- 次梯度方法
- 论文《Applying Deep Learning To Airbnb Search》阅读笔记
- SFT(Supervised Fine-Tuning,即有监督微调)
- 论文 | PAL: A Position-bias Aware Learning Framework for CTR Prediction in Live Recommender Systems
- 凸优化中的 Slater 条件
- 因果推断 | uplift | 营销增长 | 增长算法 | 智能营销
- Context Parallel(简称CP)并行化技术
- ITC(Image-Text Contrastive)loss和ITM(Image-Text Matching)loss
- tf.losses.log_loss
最常浏览
- 016 推荐系统 | 排序学习(LTR - Learning To Rank)
- 偏微分符号
- i.i.d(又称IID)
- 利普希茨连续条件(Lipschitz continuity)
- (error) MOVED 原因和解决方案
- TextCNN详解
- 找不到com.google.protobuf.GeneratedMessageV3的类文件
- Deployment failed: repository element was not specified in the POM inside distributionManagement
- cannot access com.google.protobuf.GeneratedMessageV3 解决方案
- CLUSTERDOWN Hash slot not served 问题原因和解决办法
×