# Handle missing data.
def fill_missing_values(df):
df.category_name.fillna(value="Other", inplace=True)
df.brand_name.fillna(value="missing", inplace=True)
df.item_description.fillna(value="None", inplace=True)
return df
train_df = fill_missing_values(train_df)
test_df = fill_missing_values(test_df)
003 pandas | fillna | Handle missing data
pandas相关文章
最近热门
- spark常用例子合集
- 003 kaggle | submit result
- 语义分割以及常见的语义分割算法
- 推荐系统 | 归纳偏置(Inductive Bias)
- Pyomo(Python Optimization Modeling Objects)
- bazel target-syntax
- Speculative decoding(推测性解码)
- 金融领域BSM模型(Black-Scholes-Merton模型)和KMV模型
- calibration,模型纠偏,模型校准
- AttributeError: 'module' object has no attribute '_internal_create_key'
最常浏览
- 016 推荐系统 | 排序学习(LTR - Learning To Rank)
- 偏微分符号
- i.i.d(又称IID)
- 利普希茨连续条件(Lipschitz continuity)
- (error) MOVED 原因和解决方案
- TextCNN详解
- 找不到com.google.protobuf.GeneratedMessageV3的类文件
- Deployment failed: repository element was not specified in the POM inside distributionManagement
- cannot access com.google.protobuf.GeneratedMessageV3 解决方案
- CLUSTERDOWN Hash slot not served 问题原因和解决办法
×